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Dynamic rigidity transition
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An inflated closed loop~or membrane! is used to demonstrate a dynamic rigidity transition that occurs when
impact energy is added to the loop in static equilibrium at zero temperature. The only relevant parameter in this
transition is the ratio of the energy needed to collapse the loop and the impact energy. When this ratio is below
a threshold value close to unity, the loop collapses into a high-entropy floppy state, and it does not return to the
rigid state unless the impact energy can escape. The internal oscillations are in the floppy state dominated by
1/f 2 noise. When the ratio is above the threshold, the loop does not collapse, and the internal oscillations
resulting from the impact are dominated by the eigenfrequencies of the stretched membrane. In this state, the
loop can bounce for a long time. It is still an open question whether bouncing will eventually vanish or whether
a stationary bouncing state will be reached. The dynamic transition between the floppy and the rigid state is
discontinuous.
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I. INTRODUCTION

Rigidity transitions have attracted a lot of interest duri
recent years@1#. The rigidity of a connected network is gov
erned by the amount of elastic constraints in relation to
number of degrees of freedom. The distribution of the c
straints is also important as the overconstraining of so
degrees of freedom does not add to rigidity. A square lat
in a two-dimensional space with sites connected thro
central-force potentials is right at the rigidity threshold. T
number of floppy modes per degrees of freedom can be w
ten as@2# f 512^z&/z* 1nr , where ^z& is the number of
constraints per node,z* 54 is the number of constraints a
the rigidity threshold, andnr is the number of redundan
bonds per degree of freedom. There are obviously no red
dant bonds in a square lattice, and^z&54. The lattice can
nevertheless be sheared without any elastic resistance. H
ever, adding one single constraint anywhere in the lattice
the form of a diagonal spring will make it rigid~if periodic
boundary conditions are imposed@3#!. Replacing the central
force springs with vector-potential beams~which have both
bending and tensile stiffness! would take the square lattic
far above~i.e., in terms of constraints! the rigidity threshold.
On the other hand, a central-force network with the struct
of a random network of fibers is not rigid at any finite de
sity of fibers, but can be driven through a rigidity transitio
by adding extra constraints@6,4,5#. In these models, rigidity
thus appears as a result of increasing the number of
straints to a formerly flexible structure.

Constraint-counting methods can only give the ze
temperature equilibrium of the system. At nonzero tempe
tures the equilibrium must be determined through an app
priate free energy. For a system in a heat bath, e.g.,
equilibrium is given by the minimum of the Helmholtz fre
energyF5E2TS, in which entropy plays an important rol
as soon asT.0. If a system does not have floppy modes,
mechanical equilibrium is typically governed by internal e
ergy, and entropy can be neglected. Floppy motions do
cost internal energy, but they do cost@7# free energy. ForT
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.0 there are thus stochastic restoring forces of entropic
gin, as has been demonstrated@7# for randomly diluted lat-
tices. Close to the rigidity percolation threshold, and in so
cases below it, the entropic contributions to rigidity domina
at anyT.0. In diluted central-force lattices, entropic rigid
ity appears above the connectivity-percolation thresho
which typically is different @2–4# from the rigidity-
percolation threshold.

In this paper we investigate in terms of rigidity the d
namics of a simple structure when the ratio of the bending
tensile stiffness is variable. For this purpose we use a sim
model for a closed membrane, a one-dimensional closed
of mass points connected by springs. For this structure,^z&
52, which means that it is clearly below the rigidity thres
old. If, however, the loop is stretched it will become rigid.
natural way to stretch a one-dimensional closed loop i
two-dimensional space is to ‘‘inflate’’ it. The stiffness of
local bending of the membrane will then becomeet/2,
wheree is the spring constant andt is the tension caused b
the inflation pressure. This takes the loop right to the rigid
threshold, and the number of floppy modes vanishes
straightforward way of understanding this is to describe
internal pressure such that it forces the mass points to be
fixed distance from the center of the loop. This addsN con-
straints, ifN is the number of mass points. The coordinati
of each of the mass points in the spring loop is increased
1, and the coordination of the center point isN. The average
coordination of the system is hence increased by 11(N
23)/(N11)→2 asN→`. This system is somewhat abov
the rigidity threshold. It can be used to study the rigid
transition by increasing temperature, or by imposing on
mechanical disturbance, which will induce a dynamic tran
tion to a flexible state. This will make some of the constrai
marginal and transform a formerly rigid structure into a fle
ible one. We apply this method below.

II. NUMERICAL MODEL

A minimal model for a membrane is given by a clos
loop of mass points connected by linear elastic springs~a
©2003 The American Physical Society03-1
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minimal model also for a polymer loop!. The equations of
motion for this model can be written in the form

mmẄ i5t ihW i2t i 11hW i 111P~ l 0/2!nW i1P~ l 0/2!nW i 11 , ~1!

wherem are the masses at pointsmW i connected by springs
with tension forcest i , P is the inflating pressure,l 0 is the
equilibrium length of the springs,hW i is a unit vector along
spring i, and nW i is the outward unit normal to the sam
spring. To further simplify the model, we assume that pr
sureP is independent of the area inside the loop~i.e., like
osmotic pressure!.

This numerical model is rather similar to the ones used
describe biological membranes@8#. The main difference be
tween the two cases is that, in our case, inertia plays a
nificant role in the properties of the system.

We demonstrate below that, whent becomes very small
even a minor disturbance of the loop will then make it b
have like a nonrigid structure~e.g., by inducing a mechanica
deformation or raising the temperature slightly above ze!.
As t increases, this disturbance has to be larger for flex
behavior to appear. In the case of mechanical deformat
the induced rigidity transition involves dynamics of the sy
tem.

An obvious way to study the dynamics of a tw
dimensional inflated loop is to let it bounce. Bouncing of
inflated loop may seem a rather trivial problem as we
used to think of cases in which energy dissipation is stro
But what happens if dissipation is weak and inflation pr
sure is lowered until rigidity begins to vanish? And what w
happen to rigidity at higher pressures when the center
mass~c.m.! kinetic and potential energies of the loop beg
to transform into internal oscillations~i.e., oscillations of the
mass points relative to the center of mass!?

We first relax the loop to a static equilibrium and th
drop it through empty space onto a nondissipative ela
substrate~i.e., there is a repulsive linear elastic force preve
ing the mass points from penetrating deep into the subst
but there is no inertia related to the deformation of the s
strate and, therefore, all energy is returned to the loop!. There
is thus no mechanism for dissipating the energy that is
tially stored in the form of potential energy in the gravit
tional field, and the work done by the inflation pressu
stored as an elastic tension of the membrane. Snapsho
simulations on this system are shown in Fig. 1.

III. RESULTS

As described above, we consider now a loop that is
drop freely from a fixed height above a substrate. At h
inflation pressures, the behavior of the loop is very much
expected: regular bouncing with eigenfrequency oscillati
in the membrane resulting from the impacts@Fig. 1~a!#.
Bouncing is not regular, however. The loop bounces cha
cally and the energy is slowly turned into internal oscil
tions. From the simulation results alone it is not possib
however, to reach a conclusion whether some bouncing
continue forever or if it will eventually cease. As anticipat
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above, a transition in the behavior of the loop takes pla
when the inflation pressure is lowered below a thresho
This transition first occurs close to the point where the p
tential energy equals the energy needed to fully collapse
loop. For pressures below the threshold, the loop collapse
the first bounce, and it never regains its shape@Fig. 1~b!#.
When the two energies are almost equal, there is a kind
resonance, which means that bouncing vanishes very rap
~after only a few bounces!. This situation is shown in Fig. 2
The collapsed state bears all the trademarks of a flex
structure, while the uncollapsed state behaves as a r
structure. In this sense the transition~collapse at the first
impact! is a rigidity transition. The transition differs howeve
from the ‘‘ordinary’’ rigidity transitions, in that it occurs only
as a result of adding energy and not as a result of man
lating the number of constraints. We call it therefore a d
namic rigidity transition.

We analyze the situation in several different ways. Fi
we analyze the equilibrium size of a closed loop in therm
equilibrium with a heat bath. The loop has a high-entro
collapsed state for radii below the zero-pressure static e
librium radius. This state will be preferred at low pressur
and high temperatures. At low temperatures and high p
sures, the loop will be in a low-entropy uncollapsed state

The numerical results for the bouncing loop begin w
the Fourier spectrum for its internal oscillations. If the loo
is flexible, the Fourier spectrum of the oscillations of t
loop will be dominated by zero-frequency modes. If the lo
is rigid, the oscillations are dominated by eigenfrequenc
of the membrane. Collapse to a highly deformed ‘‘flat’’ sta
is then analyzed by following the height of the first boun
and the number of mass points that touch the substrate w

FIG. 1. Snapshots of bouncing closed membranes.~a! k53.7
and ~b! k50.5.

FIG. 2. Snapshots of a bouncing closed membrane at resona
3-2
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the loop bounces. The loop radius is determined in the r
as well as in the collapsed state, and the simulation res
are compared against the theoretical results for a loop
thermal equilibrium. In the collapsed state, this means a s
able ‘‘temperature’’ is assigned to the loop. This impa
induced temperature is also compared with the thermo
namic transition temperature.

Finally we analyze the bouncing height of a rigid loop
a function of time. We demonstrate that, at high pressu
there is initially a rather fast decreasing trend in the bounc
heights, which later slows down considerably. We can
judge whether all of the energy will turn into internal osc
lations and if bouncing will eventually cease, or if a stea
state will be reached. At later times, the differences in
bouncing heights are dominated by more or less stocha
fluctuations.

A. Free energy of a loop in thermal equilibrium

We first consider a loop such as that described above
thermal equilibrium with a heat bath at temperatureT. Its
free energyF, as a function of the average radiusr and
temperature, can be approximated by

F5U~r 02r !
3kT~2p!2

2Nl0
2 ~r 22r 0

2!1NPl0~r 02r !

1U~r 2r 0!Ne l 0r 0sin~p/N!S r 2r 0

r 0
D 2

, ~2!

where r 0[(2p)21Nl0 , e is the spring constant,k is the
Boltzmann constant, andU is the Heaviside unit step func
tion. The first term on the right hand side arises from
entropy of a loop of circumferenceNl0, and of end-to-end
distance 2pr @9#. The ‘‘free distance’’ of the loop between it
end points is here assumed to describe a random walk.
stretched loop (r .r 0) the end-to-end distance is fixed, an
its entropy vanishes. The second term on the right hand
is work against the inflation pressure, and the third term
the radial component of the elastic energy of the membr
springs. MinimizingF with respect tor gives

r 5
Pr0

2e sin~p/N!
1r 0 ~3!

for r .r 0, and

r 5
N2l 0

3P

12p2kT
~4!

for r ,r 0.
We estimate the transition pointTc by equalling the free

energy Eq.~2! for the two possible states of the loop, an
find that

kTc5
1

3

~Pr0!2

e
~5!

when N is assumed to be large. For largeT and smallP, r
,r 0, and for smallT and largeP, r .r 0. The transition is
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discontinuous. In the rigid state (r .r 0) the system is that of
coupled oscillators, and the average loop radius is given
the energy minimum~vanishing entropy! of the system,
while in the flexible state (r ,r 0) there are entropic restorin
forces@7#, and the loop radius is fluctuating, with an avera
value given by the free-energy minimum. Notice, howev
that in this case the restoring forces appear only as a resu
the changes in the average radius of the loop, and the s
ture is therefore flexible.

B. Fourier spectrum of the internal oscillations

We now return to the model of a closed loop that is
drop from heighth0 above a substrate, and which the
bounces off that substrate. The energy of the bouncing l
has five different components: The elastic energy (Ee) of the
springs, the kinetic energy of the mass points (Ek), the po-
tential energy in the gravitational field (Eh), the elastic en-
ergy of deformation of the substrate during impacts (Eimp),
and the work done against the pressure as the loop is
formed (Ep). Figure 3 shows these energy components fo
single simulation. First, when the loop is being dropped, p
tential energy is transformed into kinetic energy, while all t
other components vanish. When the loop bounces the
time, there will be a complicated exchange of energy
tween the different components. The evolution of the sub
quent bouncing heights will thus become highly nontrivia

We benchmarked the model we use by recording all
ergy components during the simulations. The total energy
the system was found to vary by less than60.01%, which
we found very satisfactory.

Fourier spectra of the internal oscillations of the loop c
be used to characterize their properties, and some of them

FIG. 3. The energy components of the system as a function
time. ~a! The kinetic energy increases until the loop hits the su
strate, whereafter it drops and then oscillates with a small am
tude. The elastic energy decreses at the first impact and begins
to oscillate.~b! The potential energy describes the bouncing mot
of the loop. The impact energy is nonzero only when the loop is
contact with the substrate. The work against the inflation press
oscillates roughly out of phase with the elastic energy oscillatio
3-3
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shown in Fig. 4. At a low pressure@Figs. 4~a! and 4~b!,
Pl05e1] these oscillations seem to be dominated by Brow
ian ~thermal! motion of the masses (1/f 2 power spectrum!.
At a high pressure@Fig. 4~c!, Pl05e5] these oscillations are
dominated by the eigenfrequencies of the loop. The eigen
quencies of small vibrations of a stretched loop ofN mass
points of massm are given by A4t/(ml0)sin„np/@2(N
11)#…, wheren runs from 1 toN, and t is as before the
tension of the connecting springs of equilibrium lengthl 0.
We cannot expect to find exactly these frequencies in
simulation because the vibrations are strong enough
higher-order terms to become important. The dominant p
in Fig. 4~c! coincides, however, approximately~within 10%!
with the eigenfrequency corresponding ton52. Just below
the threshold pressure, the spectra after the first impact
rather complicated mixtures of eigenfrequencies and z
frequency modes. We will demonstrate below, however, t
a transition in the average loop radius nevertheless ta
place then. Near the threshold, the difference between
two free-energy minima is small, and transient behavior
appear. A collapsed loop can display local eigenfreque
oscillations, and an uncollapsed loop can have deformat
with very long wavelengths. Well below the threshold, tra
sition to the flexible state is very sharp.

C. Height of the first bounce

The elasticity of the loop can be measured by record
how high the first bounce is in comparison to the origin
height. For a perfectly elastic loop, this ratio (h1 /h0) would
be equal to unity. At an inelastic impact, some of the ene
is transformed into work against the pressure, and into in
nal oscillations within the loop. This part of energy cannot
regained as potential energy in the subsequent bounces

It is only possible for the loop to collapse completely
the energy required for a total collapse,Ep'NPl0(r 0

FIG. 4. Fourier spectrum of the motion of the mass points w
respect to the center of mass of the membrane, calculated ov
few bounces.~a! Pl05e1 on a linear scale.~b! Pl05e1 on a loga-
rithmic scale. The low frequency modes are compared to 1/f 2. ~c!
Pl05e5. The dominant frequency is located atf 521, which is
approximately equal to the eigenfrequency corresponding ton52,
f n523.2.
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10.5dr ), is smaller than the initial potential energyNmgh0.
Here dr is the change in the loop radius as a result of
inflation, and h0 is the height from which the loop is
dropped. We would thus expect that the parameter govern
the elastic behavior of the loop under impact is

k[
NPl0~r 010.5dr !

Nmgh0
'

Pl0r 0

mgh0
, ~6!

where the last approximation holds for small pressures at
below the threshold.

Figure 5~a! demonstrates that the simulated results
h1 /h0 are rather well described by a single-valued functi
f (k), which has its minimum when the argument is close
1. This minimum represents the threshold, a resonant c
for which almost all of the potential energy is used for co
lapsing the loop at the first impact, and very little energy
left for the first bounce:h1 /h0 reaches values as low as 0.0
To the right of the minimum inf (k), the loop is rigid and
bounces in the uncollapsed state like an ordinary ball@cf.
Fig. 1~a!#. To the left of the minimum, the loop collapses
a ‘‘bouncing rag,’’ but only a fraction of the total energy
needed for the collapse@cf. Fig. 1~b!#.

D. Collapse of the loop

The collapse of the loop can also be demonstrated
considering the fraction of the mass points that touch
substrate during the first impact (Nb /N). This result is
shown in Fig. 5~b!. If Nb /N51.0, the loop becomes com
pletely collapsed at the first impact. For more rigid me
branesNb /N is less than 1. To demonstrate the transitionli
behavior ofNb /N, we plot this quantity for differentN in
Fig. 5~c!. The transition between the collapsed and unc
lapsed states becomes more distinct for largerN.

Based on the behavior of the energy components,
functional form off to the left of the minimum, atk'1, can
be estimated. In the region where the collapse takes pl
one might guess that the energy that is transformed into

r a

FIG. 5. ~a! h1 /h0 as a function ofk for h0520,40,80; m
50.05,0.10,2.0;g55,10,20, ande l 051000,2000,4000.~b! Nb /N
as a function ofk for the same parameters as in~a!. ~c! Nb /N as a
function of k for N5400,800,1600.~d! h1 /h0 as a function ofk.
The line is the function 12k.
3-4
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DYNAMIC RIGIDITY TRANSITION PHYSICAL REVIEW E 67, 016103 ~2003!
ternal oscillations of the membrane during the first impac
independent ofP. This means thatEe1Ek at the maximum
height after the first impact should be a constantcke . Since
the loop completely collapses in this region,Ep'NPl0r 0, it
follows that

h1

h0
'1.02

NPl0r 0

Nmgh0
2

cke

Nmgh0
. ~7!

cke can be obtained by recordingh1 /h0 at P50. Equation
~7! with cke50 is plotted as a guide to the eye with simul
tion results in Fig. 5~d!. Sincecke is in fact positive, this plot
lies above the simulation results. One can however see
for at leastk,0.6, the linear approximation holds very we
The regionk.0.6 is affected by the resonant behavior as
ciated with the threshold. Obviously collapse takes pla
whenever it is energetically possible, and the needed en
is removed from the c.m. kinetic energy of the loop, toget
with additional energy used for increased internal osci
tions of the loop. This additional energy increases with
creasing c.m. kinetic energy.

E. Loop radius

The bouncing loop as considered here is not in ther
equilibrium as it is not connected to a heat bath. It is th
evident that no temperature can be assigned to a rigid bo
ing loop whose internal oscillations are dominated, at le
for a very long time, by eigenfrequency oscillations. Wh
the loop collapses, however, the velocity distribution of
internal oscillations turns out to assume very rapidly
Gaussian form, in fact it happens immediately after the fi
bounce. If we interpret this distribution as a Maxwe
Boltzmann distribution, we can assign a temperature to
collapsed loop. In leading order, this temperature co
sponds, in the resonant case described above, to all o
initial c.m. potential energy transforming into internal osc
lations.

We can thus think of this first bounce to rapidly heat
the loop, and thereby giving rise to an entropic contribut
to its free energy as described by Eq.~2!. Energy is not
dissipated away from the loop so that, once created, the
perature is well defined even though it changes at the
few subsequent bounces. The situation is thus quite simila
having the loop in a heat bath. Far below the resonant c
not even subsequent bounces alter the temperature to
considerable amount. Close to resonance, the situatio
more complicated, and thermalization is much slower.

In Fig. 6, we therefore compare Eqs.~3! and ~4! with
simulation results forN5100,200,400. As the temperature
Eq. ~4!, we use the temperature obtained from the Maxw
Boltzmann distribution of the internal-oscillation velocities

Transition between the two states appears to bec
sharper for increasingN, with excellent agreement betwee
theory and simulations for the uncollapsed state. This is
course expected, as now the state of the loop is only de
mined by mechanical equilibrium. Agreement is reasona
for the collapsed state despite the several approximation
volved in using Eq.~4!. First of all, the temperature used
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this expression is not strictly constant as in a heat bath. A
estimating the entropy such that the structure of the me
brane is that of a random walk is probably not very accur
for small systems. It is possible that for higher values ofN
this assumption would hold better. Qualitatively the res
Eq. ~4! seems to well describe the simulation results.

F. Transition temperature

In order to test the theoretical free-energy prediction
the transition temperature, we consider the ratio of the te
perature obtained from the Maxwell-Boltzmann distributi
and the critical temperature defined by Eq.~5!. This ratio is
plotted in Fig. 7 as a function ofk. T/Tc.1 for k&1.4, and
T/Tc,1 for k*1.4, which means that a collapsed sta
should appear belowk'1.4 and the rigid uncollapsed sta
for k above 1.4. This is consistent with the results shown
Fig. 5~a!. It thus appears that the temperature induced in
system by the impacts can indeed be interpreted as a the
dynamic temperature. It is also evident from Fig. 7 that
kinetic energy of the internal oscillations~i.e., T) depends
roughly exponentially onk above the threshold, and in
creases more rapidly below the threshold.

G. Long-time behavior of the rigid state

Finally, we analyze the long-time~several thousand
bounces! variations in the bouncing heights at pressu
clearly above the threshold. Figure 8~a! shows the trace of
the center of mass of a bouncing loop over about 25
bounces. The pressure in this case isPl05e7. Bouncing

FIG. 6. The average membrane radius as measured over a
bounces as a function of inflation pressure. The analytical res
Eqs. ~3! and ~4! are compared to simulation results forN
5100,200, and 400.

FIG. 7. T/Tc versusk for N5400. The horizontal line marks
the transition point.
3-5
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height decays considerably over the first 100–300 boun
whereafter fluctuations dominate the behavior. The deca
the average bouncing height is roughly proportional to o
over the square root of time for the first few hundr
bounces.

Figure 7~b! shows the fluctuations in the bouncing heig
at later times. It is obvious that the heights are correlated
time and that fluctuations resemble those of Brownian m
tion. The structure of the bounce curve cannot however
that of the simple Brownian motion, as bouncing height
limited between the substrate and the height that corresp
to potential energy being equal to total energy. Such a c
straint prevents the divergence in the average-height fluc
tions, which appears in Brownian motion. Figure 7~c! shows
that the average fluctuations increase roughly logarithmic
with increasing number of bounces (N8), unlike theAN8
divergence for Brownian motion. This means that there m
exist nontrivial correlations in the bouncing heights of ad
cent bounces. Correlation functions for the differences in
jacent bouncing heights are shown in Fig. 7~d!. The correla-
tion between nearest-neighbor differences is almost zero
for the next-nearest neighbors, correlation is clearly negat

FIG. 8. ~a! The height of the center of mass~H! as a function of
time t. ~b! Bouncing heights (H8) at late times (N8 is the number of
bounces!. ~c! The average bouncing-height fluctuationsw as a func-
tion of the number of bounces.~d! CorrelationC of the bouncing-
height differences between neighboring bounces. In~c! and ~d! re-
sults are shown for two almost similar cases.
tt
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The origin of this correlation is not known to us. A possib
source for long-time correlations in the bouncing heig
could be the rotational motion of the loop, which cou
‘‘store’’ energy and then release it to other forms of ener
These correlation effects are, however, beyond the scop
the present work, and will be analyzed in a forthcoming pu
lication.

IV. CONCLUSIONS

In a rigidity transition the driving parameter is the numb
of independent constraints. When this number exceeds
number of degrees of freedom in a system, the system
comes rigid and can resist deformation. Here the transitio
different, in that we begin with an originally rigid configu
ration where the number of constraints is enough to fix
system in a certain shape. When a closed loop bounces
c.m. kinetic energy is transferred into other energy com
nents. If the average noncollective kinetic energy~i.e., inter-
nal oscillations or heat!, which is thereby increased, becom
high enough, some of these constraints become margina
the pressure is low enough or the first impact hard enou
the loop collapses. As a collapse takes place, it beco
~because of entropic effects due to internal oscillations! fa-
vorable for the loop to be in a state where the free distanc
the spring chain is as high as possible~within the boundary
conditions imposed by pressure!. Pressure no longer pro
vides a set of constraints that bind the mass points to a
tain distance from the center. In the rigid state we find,
expected, a set of coupled oscillators that bind the ene
The restoring forces are known for the mass points when
system is deformed. In the flexible state there are no defi
restoring forces for many deformations, so the zero-ene
modes, i.e., the floppy modes, dominate. There is howev
collective entropy-based restoring force which keeps the
erage length of the spring chain or the radius of the lo
constant. The dynamically driven transition is that betwe
energetically and entropically favorable states, and it is
herently discontinuous.
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