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Dynamic rigidity transition
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An inflated closed loojgor membrangis used to demonstrate a dynamic rigidity transition that occurs when
impact energy is added to the loop in static equilibrium at zero temperature. The only relevant parameter in this
transition is the ratio of the energy needed to collapse the loop and the impact energy. When this ratio is below
a threshold value close to unity, the loop collapses into a high-entropy floppy state, and it does not return to the
rigid state unless the impact energy can escape. The internal oscillations are in the floppy state dominated by
1/f2 noise. When the ratio is above the threshold, the loop does not collapse, and the internal oscillations
resulting from the impact are dominated by the eigenfrequencies of the stretched membrane. In this state, the
loop can bounce for a long time. It is still an open question whether bouncing will eventually vanish or whether
a stationary bouncing state will be reached. The dynamic transition between the floppy and the rigid state is
discontinuous.

DOI: 10.1103/PhysRevE.67.016103 PACS nun)er64.60—i, 46.70.Hg

I. INTRODUCTION >0 there are thus stochastic restoring forces of entropic ori-
gin, as has been demonstra{éd for randomly diluted lat-
Rigidity transitions have attracted a lot of interest duringtices. Close to the rigidity percolation threshold, and in some
recent year§l]. The rigidity of a connected network is gov- cases below it, the entropic contributions to rigidity dominate
erned by the amount of elastic constraints in relation to thét anyT>0. In diluted central-force lattices, entropic rigid-
number of degrees of freedom. The distribution of the condty @ppears above the connectivity-percolation threshold,
straints is also important as the overconstraining of somd/hich typically is different [2—4] from the rigidity-
degrees of freedom does not add to rigidity. A square lattic@€rcolation threshold.

in a two-dimensional space with sites connected through !N this paper we investigate in terms of rigidity the dy-
central-force potentials is right at the rigidity threshold. TheNamics of a simple structure when the ratio of the bending to

number of floppy modes per degrees of freedom can be writensile stiffness is variable. For this purpose we use a simple

ten as[2] f=1—(z)/z* +n,, where(z) is the number of model for a closed membrane, a one-dimensional closed loop
ro

constraints per node* =4 is the number of constraints at of mass points connect_e(_j by springs. For th|_s _st_rucl(mje,
the rigidity threshold, andh, is the number of redundant —2: Which means that itis clearly below the rigidity thresh-
bonds per degree of freedom. There are obviously no redurd- If. however, the loop is stretched it will become rigid. A
dant bonds in a square lattice, a(@=4. The lattice can natural way to stretch a one;_d|men“3|.onal closed loop in a
nevertheless be sheared without any elastic resistance. Hoivyo—dlmens_mnal space is to |anate_ it. The stifiness of a
ever, adding one single constraint anywhere in the lattice i ocal bgndlng Of_ the membrane- will then_ becoree/2,

the form of a diagonal spring will make it rigitf periodic ~ Weree is the spring constant andlis the tension caused by
boundary conditions are imposgl). Replacing the central- the inflation pressure. This takes the loop right to the rigidity

force springs with vector-potential bearhghich have both ~threshold, and the number of floppy modes vanishes. A
bending and tensile stiffnessvould take the square lattice straightforward way of understanding this is to describe the

far above(i.e., in terms of constraintghe rigidity threshold. interna] pressure such that it forces the mass points fo be at a
On the other hand, a central-force network with the structurd€d distance from the center of the loop. This afideon-

of a random network of fibers is not rigid at any finite den- Straints, ifN is the number of mass points. The coordination
sity of fibers, but can be driven through a rigidity transition ©f €ach of the mass points in the spring loop is increased by
by adding extra constrainf{§,4,5]. In these models, rigidity 1, and the coordination of the center poinfNsThe average

thus appears as a result of increasing the number of coffordination of the system is hence increased by(W

straints to a formerly flexible structure. —3)/(N+1)—2 asN—e. This system is somewhat above
Constraint-counting methods can only give the zerothe rigidity threshold. It can be used to study the rigidity

temperature equilibrium of the system. At nonzero temperal@nsition by increasing temperature, or by imposing on it a

tures the equilibrium must be determined through an appror_pechanical Qisturbance, _Whiph will induce a dynamic transi-
priate free energy. For a system in a heat bath, e.g. thion to a flexible state. This will make some of the constraints

equilibrium is given by the minimum of the Helmholtz free _marginal and transform a formerly rigid structure into a flex-
energyF =E—TS, in which entropy plays an important role Pl€ one. We apply this method below.

as soon a§>0. If a system does not have floppy modes, its
mechanical equilibrium is typically governed by internal en-
ergy, and entropy can be neglected. Floppy motions do not A minimal model for a membrane is given by a closed
cost internal energy, but they do c¢3i free energy. Fof  loop of mass points connected by linear elastic sprifas

II. NUMERICAL MODEL
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minimal model also for a polymer loppThe equations of C)
motion for this model can be written in the form OO
. 00 o o N

O O 9

Mui=T77— 74171+ PU o2+ P(1o/2) v, (1)

wherem are the masses at poin,ﬁs connected by springs
with tension forcesr;, P is the inflating pressurd, is the

equilibrium length of the springsfgi is a unit vector along

spring i, and Zi is the outward unit normal to the same
spring. To further simplify the model, we assume that pres- O
sureP is independent of the area inside the lo@p., like
osmotic pressupe
This numerical model is rather similar to the ones used to
describe biological membrang8]. The main difference be- O « “
tween the two cases is that, in our case, inertia plays a sig- 0 R
nificant role in the properties of the system.
We demonstrate below that, wherbecomes very small, FIG. 1. Snapshots of bouncing closed membras@sx = 3.7
even a minor disturbance of the loop will then make it be-and (b) k=0.5.
have like a nonrigid structur@.g., by inducing a mechanical

deformation or raising the temperature slightly above ero ghove, a transition in the behavior of the loop takes place
As 7 increases, this disturbance has to be larger for flexiblgyhen the inflation pressure is lowered below a threshold.
behavior to appear. In the case of mechanical deformationphis transition first occurs close to the point where the po-
the induced rigidity transition involves dynamics of the sys-tential energy equals the energy needed to fully collapse the
tem. loop. For pressures below the threshold, the loop collapses at
An obvious way to study the dynamics of a two- the first bounce, and it never regains its shipig. 1(b)].
dimensional inflated |00p is to let it bounce. BOUﬂCing of anwhen the two energies are almost equaj, there is a kind of
inflated loop may seem a rather trivial problem as we argesonance, which means that bouncing vanishes very rapidly
used to think of cases in which energy dissipation is strong(after only a few bouncesThis situation is shown in Fig. 2.
But what happens if dissipation is weak and inflation pres-The collapsed state bears all the trademarks of a flexible
sure is lowered until rigidity begins to vanish? And what will structure, while the uncollapsed state behaves as a rigid
happen to rigidity at higher pressures when the center-ofstrycture. In this sense the transitiécollapse at the first
mass(c.m,) kinetic and potential energies of the loop beginimpacy is a rigidity transition. The transition differs however
to transform into internal oscillatiorig.e., oscillations of the  from the “ordinary” rigidity transitions, in that it occurs only
mass points relative to the center of mass as a result of adding energy and not as a result of manipu-
We first relax the loop to a static equilibrium and then|ating the number of constraints. We call it therefore a dy-
drop it through empty space onto a nondissipative elastigamic rigidity transition.
substratdi.e., there is a repulsive linear elastic force prevent- e analyze the situation in several different ways. First
ing the mass points from penetrating deep into the substratge analyze the equilibrium size of a closed loop in thermal
but there is no inertia related to the deformation of the subequilibrium with a heat bath. The loop has a high-entropy
strate and, therefore, all energy is returned to the)lobipere  collapsed state for radii below the zero-pressure static equi-
is thus no mechanism for dissipating the energy that is inifiprium radius. This state will be preferred at low pressures
tially stored in the form of potential energy in the gravita- and high temperatures. At low temperatures and high pres-

tional field, and the work done by the inflation pressure,syres, the loop will be in a low-entropy uncollapsed state.
stored as an elastic tension of the membrane. Snapshots of The numerical results for the bouncing loop begin with

simulations on this system are shown in Fig. 1. the Fourier spectrum for its internal oscillations. If the loop
is flexible, the Fourier spectrum of the oscillations of the
IIl. RESULTS loop will be dominated by zero-frequency modes. If the loop

_ _ ~isrigid, the oscillations are dominated by eigenfrequencies
As described above, we consider now a loop that is lebf the membrane. Collapse to a highly deformed “flat” state
drop freely from a fixed height above a substrate. At highis then analyzed by following the height of the first bounce

inflation pressures, the behavior of the loop is very much agnd the number of mass points that touch the substrate when
expected: regular bouncing with eigenfrequency oscillations

in the membrane resulting from the impadiSig. 1(a)]. 04

Bouncing is not regular, however. The loop bounces chaoti- o

cally and the energy is slowly turned into internal oscilla- ©

tions. From the simulation results alone it is not possible, 0 o=
however, to reach a conclusion whether some bouncing will )
continue forever or if it will eventually cease. As anticipated  FIG. 2. Snapshots of a bouncing closed membrane at resonance.
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the loop bounces. The loop radius is determined in the rigid 8000
as well as in the collapsed state, and the simulation results 6000
are compared against the theoretical results for a loop in £ 4000
thermal equilibrium. In the collapsed state, this means a suit- ® 2000
able “temperature” is assigned to the loop. This impact- w 0
induced temperature is also compared with the thermody- -5000
namic transition temperature. -4000
Finally we analyze the bouncing height of a rigid loop as 6 7 8 . 9 10
a function of time. We demonstrate that, at high pressures,
there is initially a rather fast decreasing trend in the bouncing 8000}
heights, which later slows down considerably. We cannot £ 6000 In
judge whether all of the energy will turn into internal oscil- A 4000 Peonop ;
lations and if bouncing will eventually cease, or if a steady f 2000 | \, I _\}_[.\..'L‘.
state will be reached. At later times, the differences in the Lucl 0 ““»—’;f_'_“L_\\T'_
bouncing heights are dominated by more or less stochastic -2000 Vo '\J
fluctuations. -40006 - 5 5 75

A. Free energy of a loop in thermal equilibrium .
FIG. 3. The energy components of the system as a function of

We first consider a loop such as that described above, ifime. (a) The kinetic energy increases until the loop hits the sub-
thermal equilibrium with a heat bath at temperatiitelts  strate, whereafter it drops and then oscillates with a small ampli-
free energyF, as a function of the average radinsand tude. The elastic energy decreses at the first impact and begins then
temperature, can be approximated by to oscillate.(b) The potential energy describes the bouncing motion

of the loop. The impact energy is nonzero only when the loop is in

FoU(rg—r) 3kT(27T)2(r2_ 1) £ NPIo(Fo—1) contact with the substrate. The work against the inflation pressure
B 0 2N|0z 0 oo oscillates roughly out of phase with the elastic energy oscillation.

r—ro)|? 5 discontinuous. In the rigid state tr) the system is that of
' ) coupled oscillators, and the average loop radius is given by
the energy minimum(vanishing entropy of the system,
wherero=(2m) 'Nly, € is the spring constant is the  while in the flexible stater(<r) there are entropic restoring
Boltzmann constant, and is the Heaviside unit step func- forces[7], and the loop radius is fluctuating, with an average
tion. The first term on the right hand side arises from thevalue given by the free-energy minimum. Notice, however,
entropy of a loop of circumferendil,, and of end-to-end that in this case the restoring forces appear only as a result of
distance 2rr [9]. The “free distance” of the loop between its the changes in the average radius of the loop, and the struc-
end points is here assumed to describe a random walk. Intare is therefore flexible.
stretched loop r>>r,) the end-to-end distance is fixed, and
its entropy vanishes. The second term on the right hand side
is work against the inflation pressure, and the third term is )
the radial component of the elastic energy of the membrane We now return to the model of a closed loop that is let

+U(r—r0)NeI0rosin(7T/N)( ;
0

B. Fourier spectrum of the internal oscillations

springs. MinimizingF with respect tar gives drop from heighthy above a substrate, and which then
bounces off that substrate. The energy of the bouncing loop
Prg has five different components: The elastic enefgy) (of the
r= m”o () springs, the kinetic energy of the mass poirE)( the po-
tential energy in the gravitational fieldE(), the elastic en-
for r>rg, and ergy of deformation of the substrate during impadgs.(,),
and the work done against the pressure as the loop is de-
Nzlgp formed E,). Figure 3 shows these energy components for a
' 1272kT (4) single simulation. First, when the loop is being dropped, po-
tential energy is transformed into kinetic energy, while all the
for r<ry. other components vanish. When the loop bounces the first

We estimate the transition poifit, by equalling the free time, there will be a complicated exchange of energy be-
energy Eq.(2) for the two possible states of the loop, and tween the different components. The evolution of the subse-
find that guent bouncing heights will thus become highly nontrivial.

We benchmarked the model we use by recording all en-

1 (Prg)? ergy components during the simulations. The total energy of
kTC_§ € 5) the system was found to vary by less thai®©.01%, which
we found very satisfactory.
when N is assumed to be large. For lar§eand smallP, r Fourier spectra of the internal oscillations of the loop can

<rg, and for smallT and largeP, r>r,. The transition is be used to characterize their properties, and some of them are
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FIG. 5. (@ h;/hy as a function ofx for hy=20,40,80; m

FIG. 4. Fourier spectrum of the motion of the mass points with:0'05’0'1.0’2'0;925’10’20’ ande|0=1000,2009,4000(b) N /N
a function ofk for the same parameters as(a. (c) N,/N as a

respect to the center of mass of the membrane, calculated over® 2 _ )
few bounces(a) Pl,=e! on a linear scale(b) Pl,=e! on a loga- fll_Jr?Ctll_on (_)f ':th; thAOOfOOJGOO(d) h1/ho as a function ofx.
rithmic scale. The low frequency modes are compared 6. 1¢) € line 1S the function .

Plo=¢® The dominant frequency is located &t21, which is . — .
approximately equal to the eigenfrequency corresponding=@a, +O.5¢5r),_ is smaller than_ the initial pote_ntlal enerymgh,.
f,=23.2. Here or is the change in the loop radius as a result of the

inflation, and hy is the height from which the loop is
shown in Fig. 4. At a low pressurgFigs. 4a) and 4b),  dropped. We would thus expect that the parameter governing
Pl,=e'] these oscillations seem to be dominated by Brown-the elastic behavior of the loop under impact is
ian (therma) motion of the masses (f power spectrum
At a high pressuréFig. 4(c), Pl,=e€®] these oscillations are _ NPlg(ro+0.56r) Ploro ®
dominated by the eigenfrequencies of the loop. The eigenfre- = Nmgh, mghy’
guencies of small vibrations of a stretched loopNomass
points of massm are given by\47/(mly)sin(n=/[2(N  Where the last approximation holds for small pressures at and
+1)]), wheren runs from 1 toN, and r is as before the below the threshold.
tension of the connecting springs of equilibrium lendgh Figure %a) demonstrates that the simulated results for
We cannot expect to find exactly these frequencies in th&1/ho are rather well described by a single-valued function
simulation because the vibrations are strong enough fof(«), which has its minimum when the argument is close to
higher-order terms to become important. The dominant peak- This minimum represents the threshold, a resonant case
in F|g 4(0) coincides, however, approximatd]within 10%) for which almost all of the potential energy is used for col-
with the eigenfrequency correspondingrte- 2. Just below lapsing the loop at the first impact, and very little energy is
the threshold pressure, the spectra after the first impact ateft for the first bounceh, /h, reaches values as low as 0.08.
rather complicated mixtures of eigenfrequencies and zerofo the right of the minimum irf(«), the loop is rigid and
frequency modes. We will demonstrate below, however, thabounces in the uncollapsed state like an ordinary [l
a transition in the average loop radius nevertheless takdsg. 1@]. To the left of the minimum, the loop collapses to
place then. Near the threshold, the difference between th& “bouncing rag,” but only a fraction of the total energy is
two free-energy minima is small, and transient behavior cameeded for the collapdef. Fig. 1(b)].
appear. A collapsed loop can display local eigenfrequency
oscillations, and an uncollapsed loop can have deformations D. Collapse of the loop
with very long wavelengths. Well below the threshold, tran-
sition to the flexible state is very sharp.

The collapse of the loop can also be demonstrated by
considering the fraction of the mass points that touch the
substrate during the first impaciNg/N). This result is
shown in Fig. Bb). If N,/N=1.0, the loop becomes com-

The elasticity of the loop can be measured by recordingpletely collapsed at the first impact. For more rigid mem-
how high the first bounce is in comparison to the originalbranesN,/N is less than 1. To demonstrate the transitionlike
height. For a perfectly elastic loop, this ratib,(hy) would  behavior ofN,/N, we plot this quantity for differenN in
be equal to unity. At an inelastic impact, some of the energyFig. 5(c). The transition between the collapsed and uncol-
is transformed into work against the pressure, and into intetapsed states becomes more distinct for lafger
nal oscillations within the loop. This part of energy cannot be Based on the behavior of the energy components, the
regained as potential energy in the subsequent bounces. functional form off to the left of the minimum, ak~1, can

It is only possible for the loop to collapse completely if be estimated. In the region where the collapse takes place,
the energy required for a total collaps&,~NPlo(r,  one might guess that the energy that is transformed into in-

C. Height of the first bounce
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ternal oscillations of the membrane during the first impact is 100

independent oP. This means thaE.+ E, at the maximum NZ299. 0
height after the first impact should be a constgnt Since 1of ~ N-400---
the loop completely collapses in this regid),~NPlgr, it Eg (‘3‘;:

follows that

hy 1 NPlgrg Cke
ho = Nmgh Nmgh’

(@)

Cke Can be obtained by recordirg /hy at P=0. Equation
(7) with c,.=0 is plotted as a guide to the eye with simula-
tion results in Fig. &). Sincecy, is in fact positive, this plot
lies above the simulation results. One can however see th : '

for at leastc< 0.6, the linear approximation holds very well. £dS: (3) and (4) are compared to simulation results fd
The regionk>0.6 is affected by the resonant behavior asso-_ 100,200, and 400.
ciated with the threshold. Obviously collapse takes plac
whenever it is energetically possible, and the needed ener
is removed from the c.m. kinetic energy of the loop, togetherb
with additional energy used for increased internal oscilla-]c
tions of the loop. This additional energy increases with in-
creasing c.m. kinetic energy.

FIG. 6. The average membrane radius as measured over a few
drounces as a function of inflation pressure. The analytical results
3

Shis expression is not strictly constant as in a heat bath. Also,
stimating the entropy such that the structure of the mem-
rane is that of a random walk is probably not very accurate
or small systems. It is possible that for higher valuesNof
this assumption would hold better. Qualitatively the result
Eq. (4) seems to well describe the simulation results.

E. Loop radius F. Transition temperature

The bouncing loop as considered here is not in thermal |n order to test the theoretical free-energy prediction for
equilibrium as it is not connected to a heat bath. It is thughe transition temperature, we consider the ratio of the tem-
evident that no temperature can be assigned to a rigid boungerature obtained from the Maxwell-Boltzmann distribution
ing loop whose internal oscillations are dominated, at leas&nd the critical temperature defined by E§). This ratio is
for a very long time, by eigenfrequency oscillations. Whenplotted in Fig. 7 as a function of. T/T.>1 for k<1.4, and
the loop collapses, however, the velocity distribution of itsT/T.<1 for k=1.4, which means that a collapsed state
internal oscillations turns out to assume very rapidly ashould appear below~1.4 and the rigid uncollapsed state
Gaussian form, in fact it happens immediately after the firstor « above 1.4. This is consistent with the results shown in
bounce. If we interpret this distribution as a Maxwell- Fig. 5a). It thus appears that the temperature induced in the
Boltzmann distribution, we can assign a temperature to thgystem by the impacts can indeed be interpreted as a thermo-
collapsed loop. In leading order, this temperature corredynamic temperature. It is also evident from Fig. 7 that the
sponds, in the resonant case described above, to all of thgnetic energy of the internal oscillationge., T) depends
initial c.m. potential energy transforming into internal oscil- roughly exponentially onk above the threshold, and in-

lations. _ o _ creases more rapidly below the threshold.
We can thus think of this first bounce to rapidly heat up

the loop, and thereby giving rise to an entropic contribution
to its free energy as described by E®). Energy is not ) _
dissipated away from the loop so that, once created, the tem- Finally, we analyze the long-timgseveral thousand
perature is well defined even though it changes at the firdfouncey variations in the bouncing heights at pressures
few subsequent bounces. The situation is thus quite similar telearly above the threshold. Figur¢aBshows the trace of
having the loop in a heat bath. Far below the resonant cas&)e center of mass of a bouncing loop over about 2500
not even subsequent bounces alter the temperature to aRgunces. The pressure in this casePi=e’. Bouncing
considerable amount. Close to resonance, the situation is
more complicated, and thermalization is much slower.
In Fig. 6, we therefore compare Eg®) and (4) with .
simulation results foN=100,200,400. As the temperature in 101 %
Eq. (4), we use the temperature obtained from the Maxwell- £
|_
0

G. Long-time behavior of the rigid state

100

Boltzmann distribution of the internal-oscillation velocities.
Transition between the two states appears to become
sharper for increasind, with excellent agreement between | B
theory and simulations for the uncollapsed state. This is of 0.01
course expected, as now the state of the loop is only deter- 0051152253 354
mined by mechanical equilibrium. Agreement is reasonable *
for the collapsed state despite the several approximations in- FIG. 7. T/T, versusx for N=400. The horizontal line marks
volved in using Eq(4). First of all, the temperature used in the transition point.
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40 25 The origin of this correlation is not known to us. A possible
3 A 2| B source for long-time correlations in the bouncing heights
Qgg 215 could be the rotational motion of the loop, which could
‘:’20 I b “store” energy and then release it to other forms of energy.
15 ry These correlation effects are, however, beyond the scope of
10 ’ the present work, and will be analyzed in a forthcoming pub-
0 1000 2000 00 lication
t .
0.6
054 C
04 IV. CONCLUSIONS
ggg In a rigidity transition the driving parameter is the number
04 of independent constraints. When this number exceeds the
o 04t number of degrees of freedom in a system, the system be-
10 7{P 7000 10000 SRS comes rigid and can resist deformation. Here the transition is

different, in that we begin with an originally rigid configu-
ration where the number of constraints is enough to fix the
system in a certain shape. When a closed loop bounces, its
c.m. kinetic energy is transferred into other energy compo-

FIG. 8. (a) The height of the center of ma#ld) as a function of
timet. (b) Bouncing heightsl') at late times K’ is the number of

bounces (c) The average bouncing-height fluctuatiamss a func- g - ) y
tion of the number of bouncesd) CorrelationC of the bouncing-  Nents. If the average noncollective kinetic enefigy., inter-
height differences between neighboring bouncegcjrand (d) re- ~ Nal oscillations or heatwhich is thereby increased, becomes
sults are shown for two almost similar cases. high enough, some of these constraints become marginal. If
the pressure is low enough or the first impact hard enough,

height decays considerably over the first 100—300 bounced’® l00p collapses. As a collapse takes place, it becomes
whereafter fluctuations dominate the behavior. The decay dPecause of entropic effects due to internal oscillajidas

the average bouncing height is roughly proportional to cmé/orable_ forthe_loqp to bg in a state v_vhe.re.the free distance of
over the square root of time for the first few hundredth® SPring chain is as high as possibhéthin the boundary
bounces. conditions imposed by pressurePressure no longer pro-

Figure 7b) shows the fluctuations in the bouncing heightVideS a set of constraints that bind the mass points to a cer-

at later times. It is obvious that the heights are correlated i@ distance from the center. In the rigid state we find, as
time and that fluctuations resemble those of Brownian mo€XPected, a set of coupled oscillators that bind the energy.

tion. The structure of the bounce curve cannot however bédN€ restoring forces are known for the mass points when the
that of the simple Brownian motion, as bouncing height isSystem is deformed. In the flexible state there are no definite
limited between the substrate and the height that correspondigStoring forces for many deformations, so the zero-energy
to potential energy being equal to total energy. Such a con0des, i.e., the floppy modes, dominate. There is however a
straint prevents the divergence in the average-height fluctu&°!l€ctive entropy-based restoring force which keeps the av-
tions, which appears in Brownian motion. Figur@)7shows ~ €rage length of the spring chain or the radius of the loop
that the average fluctuations increase roughly logarithmicallonstant. The dynamically driven transition is that between
with increasing number of bounced(), unlike the JN’ energetlcglly anq entropically favorable states, and it is in-
divergence for Brownian motion. This means that there musterently discontinuous.

exist nontrivial correlations in the bouncing heights of adja-
cent bounces. Correlation functions for the differences in ad-
jacent bouncing heights are shown in Figd)7 The correla- We are grateful to J. O. Litmang@FC Ajax) for inspi-
tion between nearest-neighbor differences is almost zero, buation to this work, and to the Academy of Finland for finan-
for the next-nearest neighbors, correlation is clearly negativecial support(Project No. 44875 and the MaDaMe Prog)am
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